fresh vegetables

Stephanie Lansing, professor in the Department of Environmental Science and Technology at the University of Maryland, is leading two new grants totaling $6 million from the U.S. Department of Energy to develop sustainable products like biofuels and bioplastics from food waste.

With about a third of the food produced in the U.S. not being consumed, food waste is a major concern for municipalities across the country. At the same time, products like plastics and traditional sources of fuel rely on fossil fuels, which are finite and costly to the environment.

With these two grants, Lansing is leading a consortium of scientists and industry partners to not only research innovative ways to use waste, but also make value-added products that will contribute to the sustainability of our economy and planet.

“These grants are aimed at understanding the waste sources we have, particularly the quantities of food waste, and determining what opportunities exist for us to create renewable resources and energy from that waste,” Lansing said. “One grant is focused on the production of bioplastics from food waste, while the other is focused on characterizing the municipal solid waste stream to create biofuels that can replace liquid fuels like gasoline.”

These new grants are a natural extension of the work Lansing does in her Bioenergy and Bioprocessing Technology Laboratory, converting waste products into energy and value-added products, often through a process called anaerobic digestion.

“With anaerobic digestion, we are having bacteria make natural gas for us from waste that can be broken down biologically instead of using fossil fuels,” Lansing said. “This process works well with food waste, but most of our food waste is co-mingled in the larger municipal solid waste system and is mixed in with other things. For waste that has thin plastics and other bulkier products that won’t degrade biologically with anaerobic digestion, we can use a gasification process instead, which is a thermochemical reaction that will produce the gases we need in a controlled way.”

As part of the $3.5 million grant focused on biofuel production, Lansing and her team across Ohio State University, Mississippi State University, Virginia Tech, Idaho National Lab, SCS Engineers, and Quasar Energy Group will be first conducting a large characterization study across every region of the country and every season of the year to understand how location and the time of year affects the waste coming into landfills, and what the biofuel potential of that waste really is.

“It’s taking a holistic view of the waste stream and working with a realistic picture of waste to create value-added products that can be used by industry, governments and municipalities dealing with food waste, paper waste and other waste that can be turned into fuel,” Lansing said.

With that understanding, the goal is to separate wastes through processes similar to the way that recycling and trash are currently separated. Once the recycling is removed, the leftover waste can be separated into waste that can be broken down with anaerobic digestion, like food and natural waste, or waste that needs to be broken down thermochemically through gasification. Once broken down, both forms of waste can then be reconstituted back into liquid biofuels to be used similarly to traditional gasoline and diesel.

With the other ongoing $2.5 million grant, instead of producing biofuels, the goal is to produce bioplastics that are not only made without using fossil fuels, but can then be degraded much more easily than current plastic products. This work includes Amro Hassanein, assistant research scientist with the University of Maryland in Environmental Science and Technology, as well as external partners from the Naval Research Laboratory in Washington, DC, the Idaho National Laboratory, Virginia Tech and Quasar Energy Group.

“This project is really about giving food waste a value, but instead of converting it into energy like we have in the past, we are stopping the anaerobic digestion process early and then feeding the carbons to a different type of bacteria that can actually build up materials within their cells to make bioplastics,” Lansing said. “It’s creating a new pathway for food waste to create a value-added product that is more sustainable than current plastics on the market.”

Both grants involve an assessment of sustainability and an economic assessment against the current products on the market to see how marketable these new bioplastics and biofuels can be. This is why industry partners become so important, since they will help commercialize any new products.

“The idea is to help create that circular economy,” Lansing said. “We are basically trying to use either biological, chemical or thermochemical systems to recreate the different products that currently come from fossil fuels, but using the available waste resources we have now.”


What To Read Next